BONDING OF SILICON TO NON-STANDARD SUBSTRATES

OUTLINE

- Non-Standard Substrates
 - Glass
 - Sapphire
- Bonding of Silicon to Non-Standard Substrates
 - Anodic Bonding(Glass)
 - Modified Bonding process(Sapphire)

Grind and Polish SOI

Non-Standard Substrates

Silicon-on-Glass
Flat panel display
Capacitive sensors
Solar cells
Micromachining

Silicon-on-Sapphire

Improves thermal and high frequency performance of interconnects compared to SOI.
Radiation Hradness

•Better heat dissipation than quartz

Microwave cct applications

SOS previously achieved using epitaxial growth -high density of dislocations -high leakage current

Silicon-On-Glass

SPACE CHARGE

• Anodic bonding of silicon and other materials to glass.

550°C, 1000V, 1Hr

- Problems
 - Thermal coefficient of expansion.
 - High Alkali content
 - Low Temperature Processing.

Silicon-On-Glass

Selective bonding of silicon to glass Silicon dioxide/glass bond

Bond temperature 550°C, Bonding Voltage 1000V, Bonding Time 1Hr

Silicon-On-Sapphire

Dislocation free SOS can be achieved through:

Wafer bonding Techniques

Active wafer thinning technology

However:

Thermal coef. of expansion not matched to Si.
 5 x10⁻⁶/°C for sapphire compared to 3.6 x10⁻⁶/°C for Si.

Silicon dioxide layer needed for bonding

Bonding of Silicon to Sapphire

IR Image of Si/Sapphire Room Temperature Bond

IR image of SiO2 bondS.A.M image of Si bondafter 250°C anneal.After 250°C annealOxide Thick: 20nmVertice

Void Free for SiO₂ bond

Thermal Coefficient of Expansion

Anneal at 250°C

Anneal at 300°C

Crack Propagation at 300°C due to thermal Expansion Mismatch

Solution To Thermal Expansion Problem

- Low Ramp Rate on annealing: 10°C/min
- Thermal oxide Required.
- Maximum initial anneal temperature : 250°C
- Thinning to an SOS layer to a thickness <20µm
 - Increase bonding temperature 350°C
 - Improve bond strength with no fracturing.
 - Allows Grinding/Etchback

Sub-Micron SOS Without Thin Oxide

- Low temperature process (crack propagation)
- **Replace the thin silicon dioxide layer with:**
 - Thin polysilicon layer on the Sapphire
 - Thin sputtered Silicon layer
- Silicon Silicon Bonding
- Smartcut approach to achieve thin SOS layer.

Proposed Polysilicon/Smartcut Approach

